Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Journal of Environmental and Occupational Medicine ; (12): 133-140, 2022.
Article in Chinese | WPRIM | ID: wpr-960382

ABSTRACT

Background Chronic low-level exposure to lead can damage the central nervous system and cause anxiety-like behavior. However, whether changes of blood metabolites occur in this process and its relationship with lead-induced neurobehavioral disorder remain unclear. Objective To explore the effects of chronic lead acetate (PbAc) exposure at different concentrations on anxiety-like behavior and serum metabolites and their relationships in mice, as well as the mechanism of lead exposure on neurobehavioral injury in mice from the perspective of metabolomics. Methods A total of 64 healthy 4-week-old C57BL/6J mice, half male and half female, were randomly divided into four groups: control group (normal drinking water), 20 mg·L−1 PbAc group, 100 mg·L−1 PbAc group, and 500 mg·L−1 PbAc group. After 10 weeks of free drinking of water containing designed concentrations of PbAc, the mice were tested for anxiety-like behavioral changes by open field experiment. After the mice were anesthetized, blood was collected from the eyes, the serum was separated, and the effects of designed doses of lead exposure on metabolites in the serum of mice were compared by liquid chromatography with tandem mass spectrometry combined with principal component analysis and partial least squares discrimination analysis. Results The results of the open field experiment showed that the reductions in movement time spent in central area in the 100 mg·L−1 and 500 mg·L−1 PbAc groups compared with the control group were of statistical significance (P<0.05); the reduction in crossing times of central region in the 500 mg·L−1 PbAc group was statistically significant compared with the control group (P<0.05); the increases in defecation frequency in the 100 mg·L−1 and 500 mg·L−1 PbAc groups were statistically significant compared to the control group (P<0.05). In both positive and negative ion modes, compared with the control group, 157 differential metabolites were screened out in the 20 mg·L−1 PbAc group, of which 80 were up-regulated and 77 were down-regulated; 172 differential metabolites were screened out in the 100 mg·L−1 PbAc group, of which 57 were up-regulated and 115 were down-regulated; 119 differential metabolites were screened out in the 500 mg·L−1 PbAc group, of which 42 were up-regulated and 77 were down-regulated. The results of the KEGG enrichment analysis on the differential metabolites revealed alterations in metabolic pathways mainly involving primary bile acid biosynthesis, bile secretion, and cholesterol metabolism. Among the differential metabolites, norethisterone was positively correlated with the number of central region crossings (r=0.406, P<0.05); dihydrothymine was negatively correlated with the number of central region crossings (r=−0.346, P<0.05); lysophosphatidylcholine 22∶1 and lysophospholipid 14∶0 were negatively correlated with time spent in central region (r=−0.429, P<0.05; r=−0.374, P<0.05). Conclusion Chronic lead exposure induces anxiety-like behavior in mice, and this altered behavior is associated with altered metabolites in serum, with differential metabolites enriched primarily in the metabolic pathways of primary bile acid biosynthesis, bile acid secretion, and cholesterol metabolism.

2.
Cancer Research and Treatment ; : 883-893, 2018.
Article in English | WPRIM | ID: wpr-715969

ABSTRACT

PURPOSE: We sought to develop a matrix assisted laser desorption ionization-time of flight (MALDI-TOF)-based, ovarian cancer (OVC), low-mass-ion discriminant equation (LOME) and to evaluate a possible supportive role for triple-TOF mass analysis in identifying metabolic biomarkers. MATERIALS AND METHODS: A total of 114 serum samples from patients with OVC and benign ovarian tumors were subjected to MALDI-TOF analysis and a total of 137 serum samples from healthy female individuals and patients with OVC, colorectal cancer, hepatobiliary cancer, and pancreatic cancer were subjected to triple-TOF analysis. An OVC LOME was constructed by reference to the peak intensity ratios of discriminatory low-mass ion (LMI) pairs. Triple-TOF analysiswas used to select and identify metabolic biomarkers for OVC screening. RESULTS: Three OVC LOMEs were finally constructed using discriminatory LMI pairs (137.1690 and 84.4119 m/z; 496.5022 and 709.7642 m/z; and 524.5614 and 709.7642 m/z); all afforded accuracies of > 90%. The LMIs at 496.5022 m/z and 524.5614 m/z were those of lysophosphatidylcholine (LPC) 16:0 and LPC 18:0. Triple-TOF analysis selected seven discriminative LMIs; each LMI had a specificity > 90%. Of the seven LMIs, fourwith a 137.0455 m/z ion atretention times of 2.04-3.14 minuteswere upregulated in sera from OVC patients; the ion was identified as that derived from hypoxanthine. CONCLUSION: MALDI-TOF–based OVC LOMEs combined with triple-TOF–based OVC metabolic biomarkers allow reliable OVC screening; the techniques are mutually complementary both quantitatively and qualitatively.


Subject(s)
Female , Humans , Biomarkers , Colorectal Neoplasms , Hypoxanthine , Lysophosphatidylcholines , Mass Screening , Mass Spectrometry , Ovarian Neoplasms , Pancreatic Neoplasms , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL